Yang-Baxter matrix and *-calculi on quantum groups of A-series

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 26 L293
(http://iopscience.iop.org/0305-4470/26/6/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Yang-Baxter matrix and *-calculi on quantum groups of A-series

Xiao-Dong Sun and Shi-Kun Wang
CCAST (World laboratory), PO Box 3730, Beijing 100080, People's Republic of China and
Institute of Applied Mathematics, Academia Sinica, Beijing 100080, People's Republic of China

Received 21 September 1992

Abstract

In this letter, we prove that the differential calculi on quantum groups of A-series given in this letter and in previous papers are *-calculi.

It is well known that from the Yang-Baxter matrix
$R_{q}=q^{1 / N}\left(\sum_{i, j=1}^{N} q^{\delta_{2},} e_{i i} \otimes e_{j j}+\left(q-q^{-1}\right) \sum_{\substack{i, j=1 \\ i>j}}^{N} e_{i j} \otimes e_{j i}\right) \quad q \in \mathbb{C}^{*}$
we can construct a quantum group of A-series [1]. The coordinate ring of $G L_{q}(N)$ is generated on \mathbb{C} by $\left(\operatorname{Det}_{q} T\right)^{-1}$, the inverse element of quantum determinant $\operatorname{Det}_{q} T$ and $t_{i j}(i, j=1,2, \ldots, N)$ which satisfy the relation

$$
\begin{equation*}
R_{q} T_{1} T_{2}=T_{2} T_{1} R_{q} . \tag{2}
\end{equation*}
$$

If the relation $\operatorname{Det}_{q} T=1$ is added, we obtain the quantum group $S L_{q}(N)$.
Recently, differential calculi on quantum planes and quantum groups have been discussed in many papers: Wess and Zumino gave the general methods to study differential calculi on quantum planes [2], Woronowicz provided basic theory of differential calculi on quantum groups [3] and many other people gave methods to construct differential calculi on quantum groups (such as [4] and [5]), but the $*$-calculi have not been discussed very much. In this letter, we give the differential calculi on the quantum group $S U_{q}(N)$ as an extension of the results of [6-8] and prove that these differential calculi and the differential calculus given in [9] are *-calculi. We will point out that the Yang-Baxter matrix plays a very important role in the $*$-calculi on quantum groups.

Let Ω^{0} be the coordinate ring of the A-series quantum group \mathcal{A}. The first-order differential calculus is denoted by $\left\{\Omega^{1}, d\right\}$, where Ω^{1} is a bimodule of Ω^{0} and d is a linear operator from Ω^{0} to Ω^{1} satisfying:
(i) Leibnitz rule $\mathrm{d}(x y)=(\mathrm{d} x) y+x \mathrm{~d} y, \forall x, y \in \Omega^{0}$,
(ii) for an arbitrary element ρ in Ω^{1}, there always exist some elements $x_{k}, y_{k} \in \mathcal{A}$ ($k=1,2, \ldots, M$) such that $\rho=\sum_{k=1}^{M} x_{k} \mathrm{~d} y_{k}$.

On the quantum group of A-series, we have two sets of Y-B linear functionals $L^{ \pm}=\left(l_{i j}^{ \pm}\right)_{1 \leqslant i, j \leqslant N}$ defined by

$$
\begin{equation*}
\left\langle L^{+}, T\right\rangle=\lambda_{+} P R_{q} P \quad\left\langle L^{-}, T\right\rangle=\lambda_{-}^{-1} R_{q}^{-1} \quad \lambda_{ \pm} \in \mathbb{C}^{*} \tag{3}
\end{equation*}
$$

where P is the permutation matrix. If \mathcal{A} denotes the quantum group $S L_{q}(N)$, we must require $\lambda_{+}^{N}=\lambda_{-}^{N}=1$. Furthermore, if we introduce two sets of functionals on Ω^{0} as follows:

$$
\begin{align*}
& \nabla_{i j}=\frac{1}{q-q^{-1}}\left(S\left(l_{i k}^{-}\right) l_{k j}^{+}-\delta_{i j} \varepsilon\right) \tag{4}\\
& \theta_{i j k l}=S\left(l_{k i}^{-}\right) l_{j l}^{+} \tag{5}
\end{align*}
$$

where $i, j, k, l=1,2, \ldots, N, S$ is the antipode, then we have:
Proposition 1.1. For $\forall x, y \in \Omega^{0}, i, j, k, l, u, v=1,2, \ldots, N$, we have:
(i) $\nabla_{i j}(1)=0, \theta_{i j k l}(1)=\delta_{i k} \delta_{j l}$,
(ii) $\Delta \nabla_{i j}=\nabla_{u v} \otimes \theta_{u v i j}+\varepsilon \otimes \nabla_{i j}, \Delta \theta_{i j k l}=\theta_{i j u v} \otimes \theta_{u v k l}$,
(iii) $\nabla_{i j} *(x y)=\left(\nabla_{u v} * x\right)\left(\theta_{u v i j} * y\right)+x\left(\nabla_{i j} * y\right), \theta_{i j k l} *(x y)=\left(\theta_{i j u v} * \dot{x}\right)\left(\theta_{u v k l} * y\right)$.

The proof of proposition 1.1 can be found in [7]. Let Ω^{1} be the left module generated by $\omega^{i j}(i, j=1,2, \ldots, N)$; therefore the first-order differential calculus on \mathcal{A} is given by

$$
\begin{align*}
& \mathrm{d} x=\left(\nabla_{i j} * x\right) \omega^{i j} \tag{6}\\
& \omega^{i j} \cdot x=\left(\theta_{i j k l} * x\right) \omega^{k l} \quad \forall x \in \Omega^{0} \quad i, j, k, l=1,2, \ldots, N . \tag{7}
\end{align*}
$$

From the discussion in [8], we know (6) and (7) in fact give the first-order bicovariant differential calculus on the quantum group of A-series. Furthermore the quantum de Rham complex on \mathcal{A} is defined by

$$
\begin{equation*}
\Omega^{\wedge}=\Omega^{\otimes} /\{\operatorname{ker}(1-\sigma)\} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{ker}(1-\sigma)= & {\left[\left(\mathbf{R}+q^{2} E_{N^{4}}\right)\left(\mathbf{R}+q^{-2} E_{N^{4}}\right)\right]_{i j k l}^{\alpha \beta \gamma \delta} \omega^{i j} \otimes \omega^{k l} } \\
& \alpha, \beta, \gamma, \delta, i, j, k, l=1,2, \ldots, N \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{R}=\left(P R_{q}^{t_{1}}\right)_{23}\left(R_{q}^{t} P\right)_{12}\left(P R_{q}^{-1}\right)_{34}\left(P R_{q}^{t_{1}}\right)_{23}^{-1} . \tag{10}
\end{equation*}
$$

From (9) and (10), it can be seen that the $Y-B$ matrix plays a very important role in the construction of the quantum de Rham complex.

Based on the property of the $Y-\mathrm{B}$ matrix R_{q} of A-series, we have the following important proposition:

Proposition 1.2. Let $\nabla_{i j}$ and $\theta_{i j k l}(i, j, \dot{k}, l=1,2, \ldots, N)$ be defined by (4) and (5). We have
$\nabla_{i j}\left(t_{a b}\right)=\nabla_{j i}\left(t_{b a}\right) \quad \theta_{i j k l}\left(t_{a b}\right)=\theta_{j i l k}\left(t_{b a}\right) \quad i, j, k, l, a, b=1,2, \ldots, N$.
Remark: For the definition of bicovariant differential calculus on quantum groups, see [3].

If we introduce an operator $: \Omega^{0} \longrightarrow \Omega^{0}$ to $S L_{q}(N)$ satisfying

$$
\begin{equation*}
T^{*}=S(T)^{t} \tag{11}
\end{equation*}
$$

where S is the antipode, then the quantum group $S U_{q}(N)$ is obtained. If the * operator can be extended to an operator on the quantum de Rham complex Ω^{\wedge} satisfying
$\left(\rho_{1} \wedge \rho_{2}\right)^{*}=(-1)^{k_{1} k_{2}} \rho_{2}^{*} \wedge \rho_{1}^{*} \quad(d \rho)^{*}=d\left(\rho^{*}\right) \quad \rho, \rho_{1}, \rho_{2} \in \Omega^{\wedge}$
where k_{1} and k_{2} are the orders of ρ_{1} and ρ_{2} respectively, then (Ω^{1}, d) is called a $*$-calculus. According to the basic theory of the quantum matrix group of Woronowicz [3], $\left(\Omega^{1}, d\right)$ is a ${ }^{*}$-calculus $\Longleftrightarrow S(\mathcal{H})^{*} \subseteq \mathcal{H}$, where $\mathcal{H}=$ ker $\varepsilon \cap$ $\left\{\cap_{i, j=1}^{N} \operatorname{ker} \nabla_{i j}\right\}, \varepsilon$ is the co-unit.

By [8], if we denote the set of the generators of the right ideal \mathcal{H} by Λ, then for the quantum group $S U_{q}(N)$, the elements of Λ can be written as

$$
\xi_{a b c d}=t_{a b} t_{c d}-\nabla_{i \jmath}\left(t_{a b} t_{c d}\right)\left(M^{-1}\right)_{k l}^{i j} t_{k l}-C_{a b c d}
$$

where

$$
M_{k l}^{i j}=\nabla_{k l}\left(t_{i j}\right) \quad C_{a b c d}=\varepsilon\left(t_{a b} t_{c d}-\nabla_{i j}\left(t_{a b} t_{c d}\right)\left(M^{-1}\right)_{k l}^{i j} t_{k l}\right) .
$$

By (11), we know

$$
S\left(t_{i j}\right)^{*}=t_{j i}
$$

By proposition 1.2, we have

$$
\begin{aligned}
& \nabla_{i j}\left(t_{a b} t_{c d}\right)=\theta_{i j k l}\left(t_{a b}\right) \nabla_{k l}\left(t_{c d}\right)-\delta_{a b} \nabla_{i j}\left(t_{c d}\right)=\nabla_{j i}\left(t_{b a} t_{d c}\right) \\
& \left(M^{-1}\right)_{k l}^{i j}=\left(M^{-1}\right)_{i k}^{j i} .
\end{aligned}
$$

Therefore

$$
S\left(\xi_{a b c d}\right)^{*}=\xi_{b a d c}
$$

i.e. $S(\Lambda)^{*}=\Lambda$, and then we straightforwardly have $S(\mathcal{H})^{*} \subseteq \mathcal{H}$. Hence we have proved that the differential calculus on $S U_{q}(N)$ is a $*$-calculus. Therefore we have N differential *-calculi on $S U_{q}(N)$ different from each other by the choice of the product $r=\lambda_{+} \lambda_{-}\left(r^{N}=1\right)$.

The construction of the quantum Lorentz group was first given by Podlés and Woronowicz [10], and then discussed in some other papers. In fact the quantum Lorentz group can be treated as $S L_{q}(2, \mathbb{C})$, the complex version of $S L_{q}(2)$. The
coordinate ring of a quantum Lorentz group is generated by 8 elements $t_{i j}$ and $t_{i j}$ $(i, j=1,2)$. If we arrange them into two 2×2 matrices as

$$
\tau=\left(\begin{array}{ll}
T & \\
& \hat{T}
\end{array}\right) \quad T=\left(t_{i j}\right)_{i, j=1,2} \quad \hat{T}=\left(t_{i j}\right)_{i, j=1,2}
$$

then the relations satisfied by these elements can be written as
$t_{i j}=\left(S\left(t_{j i}\right)\right)^{*} \quad \operatorname{Det}_{q} T=t_{11} t_{22}-q t_{12} t_{21}=1 \quad \operatorname{Det}_{q} \hat{T}=t_{\mathrm{ii}} t_{2 \overline{2}}-q t_{i 2} t_{2 i}=1$
and

$$
\begin{equation*}
\mathcal{R} \tau_{1} \mathcal{T}_{2}=\tau_{2} \mathcal{T}_{1} \mathcal{R} \tag{13}
\end{equation*}
$$

where $\mathcal{R}=\left(\mathcal{R}_{c d}^{a b}\right)_{a, b, c, d=1,2, \mathrm{i}, \mathcal{Z}}$,

$$
\mathcal{R}_{k l}^{i j}=R_{k l}^{i j} \quad \mathcal{R}_{k l}^{i j}=\left(\left(R^{+}\right)^{-1}\right)_{k l}^{i j} \quad \mathcal{R}_{k l}^{i j}=R_{k l}^{i j} \quad \mathcal{R}_{k l}^{i j}=\left(\left(R^{+}\right)^{-1}\right)_{k l}^{i j}
$$

$$
i, j, k, l=1,2
$$

and R is $2 \times 2 \mathrm{Y}-\mathrm{B}$ matrix of A-series and other elements of \mathcal{R} are zeros. It can be checked that \mathcal{R} also satisfies the Yang-Baxter equation.

We can define two sets of linear functionals by

$$
\left\langle l_{a b}^{+}, t_{c d}\right\rangle=P \mathcal{R} P \quad\left\langle l_{a b}^{-}, t_{c d}\right\rangle=\mathcal{R}^{-1} \quad a, b, c, d=1,2, \overline{1}, \tilde{2} .
$$

We can also define $\nabla_{a b}$ and $\theta_{a b c d}(a, b, c, d=1,2, \overline{1}, \overline{2})$ by (4) and (5) as we have done for $S U_{q}(N)$.

The differential calculus on quantum Lorentz was discussed in [9], and the elements of the generators set Λ corresponding to the quantum Lorentz group can be written as

$$
\begin{aligned}
& \xi_{a b c d}=t_{a b} t_{c d}-\nabla_{i j}\left(t_{a b} t_{c d}\right)\left(M^{-1}\right)_{k l}^{i j} t_{k l}-C_{a b c d} \\
& \xi_{\bar{a} \bar{b} \bar{c} d}=t_{\overline{\tilde{b}} \bar{b} t_{\bar{c} d}}-\nabla_{i j}\left(t_{\bar{a} \bar{b}} t_{\bar{c} \bar{d}}\right)\left(M^{-1}\right)_{k i}^{j i} t_{\bar{k} \bar{l}}-C_{\bar{a} \bar{b} \bar{c} d}
\end{aligned}
$$

where

After some computation we have

$$
\nabla_{i j}\left(t_{a b} t_{c d}\right)\left(M^{-1}\right)_{k l}^{i j}=\nabla_{i j}\left(t_{\bar{a} \bar{b}} t_{\bar{c} \bar{d}}\right)\left(M^{-1}\right)_{\vec{k} i}^{i j}
$$

and

$$
S\left(\xi_{a b c d}\right)^{*}=\xi_{\bar{a} \bar{a} d \bar{c}} \quad S\left(\xi_{\bar{a} b \bar{b} d}\right)^{*}=\xi_{b a d c}
$$

Therefore, $S(\Lambda)^{*}=\Lambda$, and $S(\mathcal{H})^{*} \subseteq \mathcal{H}$. Thus we have proved that the differential calculus on the quantum Lorentz group given in [9] is a $*$-calculus.

It is a pleasure for us to thank J Wess and P P Kulish for valuable discussion. This work is supported by the Natural Science Foundation of Academia Sinica. The main part of this letter was contributed as a talk in June, 1992 at the 21st international conference on differential geometric methods in theoretical physics, Tianjin, China.

$$
\begin{aligned}
& M_{k l}^{i j}=\nabla_{k l}\left(t_{i j}\right) \quad M_{k i}^{i j}=\nabla_{\bar{k} i}\left(t_{i j}\right) \\
& C_{a b c d}=\varepsilon\left(t_{a b} t_{c d}-\nabla_{i j}\left(t_{a b} t_{c d}\right)\left(M^{-1}\right)_{k l}^{i j} t_{k l}\right)
\end{aligned}
$$

References

[1] Reshetikhin N Yu, Takhtadzhyan L A and Faddeev L D 1990 Quantization of Lie groups and Lie algebras Leningrad Math. J. 1 193-224
[2] Wess J and Zumino B 1990 Covariant differential calculus on the hyperplanes Preprint CERN-5697
[3] Woronowicz S L 1989 Differential calculus on compact matrix pseudogroups (quantum groups) Commun. Math. Phys. 122 125-70
[4] Jurčo B 1991 Differential calculus on quantized simple Lie groups Lett. Math. Phys. 22 171-86
[5] Carow-Watamura U, Schliecker M, Watamura S and Weich W 1991 Bicovariant differential calculus on quantum groups $S U_{q}(N)$ and $S O_{q}(N)$ Commun. Math. Phys. $142605-41$
[6] Wu K and Zhang R J 1992 Differential calculus on quantum matrix Lie groups Commun. Theor. Phys. 17331
[7] Sun X D and Wang S K 1992 Bicovariant differential calculus on the two-parameter quantum group $G L_{p, q}(2)$ J. Math. Phys. 33(10) 3313-29
[8] Sun X D and Wang S K 1992 Bicovariant differential calculus on quantum group $G L_{q}(N)$ Preprint CCAST-92-04, ASIAM-92-07, ASITP-92-12
[9] Sun X D, Wang S K and Wu K 1992 Differential calculus on quantum Lorentz group Preprint CCAST-92-14, ASITP-92-18, ASIAM-92-11
[10] Podlés P and Woronowicz S L 1990 Quantum deformation of Lorentz group Commun. Math Phys. 130381

